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Resumo
O presente artigo descreve o SipamMar, um sistema autônomo brasileiro de detecção e simulação da dis-
persão de manchas de óleo em águas jurisdicionais brasileiras, visando contribuir para o monitoramento 
ambiental da Amazônia Azul – patrimônio estratégico e vulnerável a derramamentos de óleo. O sistema 
integra sensoriamento remoto, inteligência artificial e modelagem numérica para criar um sistema opera-
cional automatizado de alerta e simulação da dispersão de óleo em águas brasileiras. A metodologia inclui 
detecção automatizada de manchas, por Redes Neurais Convolucionais (U-Net com ResNet-50), em ima-
gens de Radar de Abertura Sintética (SAR) do Sentinel-1, treinadas com 8.072 amostras. A modelagem 
da dispersão utiliza o modelo Lagrangeano MEDSLIK-II, alimentado por dados meteoceanográficos do 
Copernicus, ERA5 e GFS/NOAA. Dados ambientais auxiliares (vento, clorofila, correntes e temperatura) 
são usados para validar detecções e reduzir falsos positivos. Os estudos de caso demonstraram a capacidade 
do sistema em identificar manchas com altas probabilidades (>80%) e simular suas trajetórias, com um 
tempo de processamento operacional. O SipamMar representa um avanço significativo na resposta a emer-
gências ambientais, com perspectivas de futuras validações in-situ e expansão operacional para otimização 
contínua.

Palavras-Chave: óleo; Amazônia Azul; Sensoriamento Remoto; Inteligência Artificial; SAR.
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Abstract
This paper introduces SipamMar, an autonomous Brazilian system designed for the detection and disper-
sion simulation of oil spills within Brazilian jurisdictional waters. This system aims to enhance the envi-
ronmental monitoring of the “Blue Amazon,” a strategic national asset vulnerable to oil spills. SipamMar 
integrates remote sensing, artificial intelligence, and numerical modeling to establish an automated, ope-
rational alert and oil spill simulation framework. Its methodology features automated slick detection in 
Sentinel-1 Synthetic Aperture Radar (SAR) imagery using a Convolutional Neural Network (U-Net with a 
ResNet-50 backbone) trained on 8,072 samples. For dispersion modeling, the system employs the Lagran-
gian MEDSLIK-II model, which is driven by metoceanographic data from Copernicus, ERA5, and GFS/
NOAA. To validate detections and minimize false positives, auxiliary environmental data — including 
wind, chlorophyll, currents, and temperature — are incorporated. Case studies have demonstrated the 
system’s capability to effectively identify oil slicks with a high degree of probability (>80%) and simulate 
their trajectories within an operational timeframe. SipamMar marks a significant advancement in environ-
mental emergency response, with future work focused on in-situ validation and operational expansion for 
continuous improvement.

Keywords: oil spill; Blue Amazon; Remote Sensing; Artificial Intelligence; SAR.

Resumen
El presente artículo describe SipamMar, un sistema autónomo brasileño para la detección y simulación 
de la dispersión de manchas de petróleo en aguas jurisdiccionales brasileñas, con el objetivo de contribuir 
al monitoreo ambiental de la Amazonia Azul, un patrimonio estratégico vulnerable a los derrames de pe-
tróleo. El sistema integra teledetección, inteligencia artificial y modelado numérico para crear un sistema 
operativo automatizado de alerta y simulación de la dispersión de petróleo en aguas brasileñas. La metodo-
logía incluye la detección automatizada de manchas, mediante Redes Neuronales Convolucionales (U-Net 
con ResNet-50), en imágenes de Radar de Apertura Sintética (SAR) del Sentinel-1, entrenadas con 8.072 
muestras. El modelado de la dispersión utiliza el modelo Lagrangiano MEDSLIK-II, alimentado por datos 
meteoceanográficos de Copernicus, ERA5 y GFS/NOAA. Se utilizan datos ambientales auxiliares (viento, 
clorofila, corrientes y temperatura) para validar las detecciones y reducir los falsos positivos. Los estudios 
de caso demostraron la capacidad del sistema para identificar manchas con altas probabilidades (>80%) 
y simular sus trayectorias en un tiempo de procesamiento operacional. SipamMar representa un avance 
significativo en la respuesta a emergencias ambientales, con perspectivas de futuras validaciones in situ y 
expansión operativa para una optimización continua.

Palabras Clave: petróleo; Amazonia Azul; Teledetección; Inteligencia Artificial; SAR.

Résumé
Cet article décrit SipamMar, un système autonome brésilien de détection et de simulation de la dispersion 
des nappes d’hydrocarbures dans les eaux juridictionnelles brésililiennes, visant à contribuer à la sur-
veillance environnementale de l’Amazonie Bleue – un patrimoine stratégique vulnérable aux déversemen-
ts de pétrole. Le système intègre la télédétection, l’intelligence artificielle et la modélisation numérique 
pour créer un système opérationnel automatisé d’alerte et de simulation de la dispersion des hydrocarbu-
res dans les eaux brésiliennes. La méthodologie comprend la détection automatisée de nappes par des Ré-
seaux de Neurones Convolutifs (U-Net avec ResNet-50) sur des images de Radar à Synthèse d’Ouverture 
(RSO) de Sentinel-1, entraînées avec 8 072 échantillons. La modélisation de la dispersion utilise le modèle 
Lagrangien MEDSLIK-II, alimenté par des données météo-océanographiques de Copernicus, ERA5 et 
GFS/NOAA. Des données environnementales auxiliaires (vent, chlorophylle, courants et température) 
sont utilisées pour valider les détections et réduire les faux positifs. Les études de cas ont démontré la ca-
pacité du système à identifier les nappes avec de fortes probabilités (>80%) et à simuler leurs trajectoires 
dans un temps de traitement opérationnel. SipamMar représente une avancée significative dans la réponse 
aux urgences environnementales, avec des perspectives de validations futures in situ et d’expansion opéra-
tionnelle pour une optimisation continue.

Mots-clés: pétroleo; Amazonie Bleue ; Télédétection ; Intelligence Artificielle ; RSO.
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1 INTRODUÇÃO
A costa do Brasil, com mais de 7.400 quilômetros de extensão e 5,7 milhões de km² de Zona 

Econômica Exclusiva, apelidada de “Amazônia Azul”, constitui um patrimônio nacional de interesse estra-
tégico, tanto do ponto de vista econômico e de soberania nacional, quanto ecológico. Economicamente, a 
Amazônia Azul é responsável por 95% da produção nacional de petróleo e 83% da produção de gás natural 
(Andrade; Franco, 2018). Ainda, do ponto de vista logístico e comercial, é nessa imensa região que estão as 
principais rotas de acesso do Brasil ao comércio global. Conforme destacado pelo Almirante de Esquadra 
Eduardo Bacellar Leal Ferreira, em 2017, essas rotas marítimas são responsáveis por 97% do comércio 
exterior brasileiro e por mais de 90% das comunicações do país (Andrade; Franco, 2018).

	Não somente isso, a Amazônia Azul também abriga grandes reservas de minerais cruciais para a 
fabricação de tecnologias modernas, como elementos terras raras (ETR), manganês, ferro, cobalto entre 
outros (Pessoa, 2015). A recente reivindicação brasileira pela Elevação do Rio Grande (ERG) demonstra 
o potencial de exploração mineral da Amazônia Azul (Silva, 2021). Por outro lado, o tráfico marítimo e as 
atividades de exploração dos recursos do mar podem comprometer o ambiente marinho, o que torna essa 
região vulnerável a diversas atividades danosas ao ecossistema marinho, como a poluição do mar (Barbosa 
Júnior, 2012). A vulnerabilidade dessa vasta região a eventos de derrames de óleo (oil spills, em inglês) foi 
dramaticamente evidenciada pelo derramamento ocorrido no nordeste brasileiro em 2019, que atingiu 
mais de 2.800 km de litoral, impactando ecossistemas frágeis e causando graves efeitos socioeconômicos e 
à saúde em 11 estados brasileiros (Soares et al., 2022; De Moura; Polito, 2022). 

O evento, até hoje o maior já registrado em regiões tropicais, expôs deficiências nos sistemas 
nacionais de vigilância, alerta e resposta ambiental (Magris; Giarrizzo, 2020). Diante dessa realidade, 
melhorar a capacidade de monitorar e responder a esses desastres ambientais tornou-se uma necessidade 
urgente para preservar a Amazônia Azul e as regiões costeiras do país. No entanto, o monitoramento da 
Amazônia Azul é desafiador, pois se depara com restrições orçamentárias e de pessoal, o que torna a vigi-
lância e a capacidade de resposta logisticamente ineficientes, tendo como suporte apenas nos tradicionais 
meios navais de patrulhamento. 

Nesse quadro, o emprego do sensoriamento remoto por meio de imagens de satélite, tem o poten-
cial de ampliar a capacidade de monitoramento nesta vasta área. O uso de imagens de Radar de Abertura 
Sintética (SAR, sigla em inglês), por exemplo, permite detectar objetos e eventos no oceano, sem a neces-
sidade de iluminação e condições meteorológicas favoráveis, típicas de sensores óticos (Mityagina; Lavrova, 
2018; Brekke; Solberg, 2005). Por outro lado, a quantidade de imagens disponíveis e a necessidade de 
pessoal técnico capacitado tornam o uso dessas tecnologias restrito a poucos profissionais.

Frente a esses desafios, o aprendizado de máquina (AM) oferece ferramentas para o desenvolvi-
mento de sistemas autônomos de detecção e monitoramento. De forma simplificada, a AM consiste na 
capacidade de computadores reproduzirem operações intelectuais humanas por meio de algoritmos, como 
redes neurais convolucionais, permitindo que computadores executem tarefas que, tipicamente, deman-
dariam inteligência humana, incluindo aprendizado, raciocínio e tomada de decisões em um curto espaço 
de tempo (Ortiz Valadez et al., 2024). No campo do aprendizado de máquina (Machine Learning – ML) é 
o ramo dedicado à criação de sistemas que aprendem com os dados, identificam padrões e tomam decisões 
com pouca ou nenhuma intervenção humana (Ortiz Valadez et al., 2024). Essa capacidade de aprendizado 
não supervisionada é essencial para lidar com grandes volumes de dados gerados por equipamentos de 
sensoriamento remoto, como as imagens SAR.

Já o aprendizado Profundo (Deep Learning – DL) é um ramo especializado do ML que utiliza 
redes neurais com várias camadas (redes neurais profundas) para analisar estruturas complexas de dados 
(Bhattacharyya et al., 2020). As técnicas de Deep Learning são especialmente eficazes em áreas com dados 
de alta dimensão, como reconhecimento de fala e de imagem, pois permitem que o modelo identifique, de 
forma autônoma, as características necessárias para classificar ou prever por meio de dados brutos (Lemley 
et al., 2017). As Redes Neurais Convolucionais (CNNs), por exemplo, que se destacam em tarefas de visão 
computacional, são usadas para a detecção de objetos em imagens SAR.

Nesse cenário, a fim de auxiliar no monitoramento ambiental da Amazônia Azul, o projeto intitu-
lado “Pesquisa para o Desenvolvimento de um Sistema Autônomo de Detecção e Monitoramento de Óleo 
no Oceano” foi oficializado por meio de um Termo de Execução Descentralizada (TED) entre o Centro 
Gestor e Operacional do Sistema de Proteção da Amazônia (CENSIPAM) e a Universidade Federal da 
Bahia (UFBA). O objetivo geral desse projeto é integrar tecnologias de sensoriamento remoto, aprendi-
zado de máquina e modelagem numérica para projetar um sistema operacional automatizado de alerta e 
simulação da dispersão de manchas de óleo em águas jurisdicionais brasileiras: o SipamMar. Neste artigo, 
apresenta-se a arquitetura do sistema desenvolvido, destacando os avanços metodológicos aplicados à de-
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tecção automática por redes neurais convolucionais e à modelagem preditiva das trajetórias dos contami-
nantes. Por fim, é apresentado um estudo de caso típico para demonstrar a aplicação do SipamMar como 
sistema de monitoramento ambiental costeiro.

2 TRABALHOS RELACIONADOS 
2.1 APRENDIZADO DE MÁQUINA: DETECÇÃO DE MANCHAS EM IMAGENS SAR

O aprendizado de máquina é uma ferramenta eficaz para auxiliar na detecção de manchas de óleo 
no oceano, especialmente se combinada com imagens de Radar de Abertura Sintética (SAR). A tecnologia 
SAR é vantajosa para detecção de manchas de óleo devido a sua capacidade de capturar imagens indepen-
dentemente das condições climáticas e de iluminação (luz solar), o que possibilita o monitoramento con-
tínuo do oceano (Topouzelis, 2008).

Uma série de técnicas baseadas em aprendizado de máquina foram propostas para melhorar a de-
tecção e classificação de manchas de óleo em imagens SAR. Por exemplo, redes de DL como ShuffleNet 
têm sido usadas para aumentar a precisão da segmentação de derrames de óleo em imagens SAR e reduzir 
o ruído speckle (inerente a tecnologia SAR) em diferentes casos (Aghaei et al., 2022). 

Por outro lado, redes profundas, como o stacked autoencoder e as deep belief networks, já foram 
utilizadas para otimizar e classificar derramamentos de óleo com mais precisão, extraindo e refinando 
características SAR polarimétricas (Chen et al., 2017). Não somente isso, técnicas avançadas que incorpo-
ram algoritmos abrangentes também podem ser aplicadas. Essas técnicas combinam detecção de manchas 
escuras na imagem, extração de características e classificação para diferenciar entre eventos de derrames 
de óleo e fenômenos semelhantes com maior precisão (Raeisi et al., 2018). 

Uma técnica utilizada entre outras para aprimorar esse processo de detecção é o uso de algoritmos 
de lógica fuzzy. O propósito desse algoritmo é aprimorar as probabilidades de classificação de derrames 
de óleo em relação aos lookalikes, que são feições na imagem que se assemelham a derrames de óleo em 
imagens SAR, também conhecidas como “falsos positivos”. Esta metodologia apresenta um modo mais 
conveniente para fins operacionais, embora feições naturais ainda possam dificultar a detecção (Liu et al., 
2010). Portanto, a integração de modelos de AM com imagens SAR é uma metodologia adequada e pro-
missora para a detecção e o monitoramento de derrames de óleo no oceano. 

2.2 RESTRIÇÕES E DIFICULDADES DA DETECÇÃO DE MANCHAS DE ÓLEO POR 
IMAGENS SAR

O uso de imagens de Radar de Abertura Sintética (SAR) tem se destacado como uma ferramenta 
eficaz para monitorar e identificar manchas de óleo, em razão da sua capacidade de operar em condições 
climáticas adversas e durante o dia ou a noite. No entanto, apesar de suas vantagens, o uso de SAR enfrenta 
restrições e limitações que podem afetar sua precisão e confiabilidade.

Uma das principais dificuldades do emprego do SAR para essa finalidade está em diferenciar der-
rames de óleo de fenômenos naturais que apresentam características visuais semelhantes, como filmes 
biogênicos, águas calmas, redemoinhos ou áreas de baixa velocidade do vento. Esses “falsos positivos” 
(lookalikes, em inglês) podem levar a erros de classificação e comprometer a eficácia da detecção (Liu et 
al., 2010; Zakzouk et al., 2025). É possível minimizar os casos de falsos positivos por meio de algoritmos 
de lógica fuzzy ou abordagens probabilísticas (Liu et al., 2010; Nirchio et al., 2005).

A resolução espacial e temporal dos satélites SAR têm um papel crítico na detecção e monitora-
mento de manchas de óleo. Imagens SAR de alta resolução e o imageamento de grandes áreas tornam o 
uso em larga escala da tecnologia SAR oneroso. Por esta razão, obtém-se imagens SAR de fontes gratuitas, 
como a constelação Sentinel da Agência Espacial Europeia (ESA, sigla em inglês). Imagens do satélite Sen-
tinel-1, por exemplo, provêm uma resolução espacial de 10 metros e uma capacidade de revisita restrita a 
6 dias (Zakzouk et al., 2025). Além disso, a região de imageamento coberta pelo satélite é controlada por 
outras organizações, o que limita a área efetivamente monitorada.

	Finalmente, o ruído speckle é uma característica inerente ao imageamento SAR causado pela 
natureza coerente dos sinais radar. Esse ruído, também conhecido como “efeito/ruído sal-e-pimenta” (sal-
t-and-pepper effect/noise, em inglês) se manifesta como interferência granular nas imagens que pode 
obscurecer a imagem. Apesar do ruído speckle ser minimizado, ainda há interferência desse ruído nas ima-
gens SAR (planos de fundo heterogêneo e bordas borradas) que dificulta a segmentação e detecção precisa 
do manchas de óleo (Aghaei et al., 2022). Essas limitações e desafios ressaltam a necessidade contínua do 
aprimoramento dos métodos analíticos, bem como o uso de dados complementares para aumentar a con-
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fiabilidade e a precisão na detecção de manchas de óleo que utilizam a tecnologia SAR.

3 METODOLOGIA
3.1 ARQUITETURA GERAL DO SISTEMA

O sistema desenvolvido é composto por dois módulos principais: (a) detecção automatizada de 
manchas de óleo a partir de imagens de radar de abertura sintética (SAR), e (b) modelagem numérica de 
dispersão do óleo com base em dados meteoceanográficos e características fisicoquímicas do óleo. Ambos 
os módulos são integrados por rotinas automatizadas de aquisição, pré-processamento, pós-processamen-
to, simulação e visualização dos resultados, operando em ambientes replicados nos servidores do CENSI-
PAM e da UFBA.

 
3.2 DETECÇÃO VIA REDES NEURAIS CONVOLUCIONAIS

A detecção de manchas de óleo foi realizada por meio da implementação de classificadores ba-
seados na arquitetura U-Net, comumente usados em classificadores de imagens ligadas a medicina (Zhou, 
2018), e na arquitetura ResNet -50 como backbone inseridos na plataforma SipamMar.

O modelo foi treinado com um conjunto de dados composto por produtos IW SLC IW SLC dos 
satélites Sentinel-1 A e B, contendo casos de possíveis derrames de óleo no oceano. Esses produtos foram 
reunidos pela equipe do Laboratório de Oceanografia por Satélite (LOS) da Universidade Federal da Bahia 
(UFBA). Os dados brutos foram disponibilizados pela Agência Espacial Europeia (ESA), enquanto a iden-
tificação e validação dos derrames — confirmados ou com alta probabilidade — foi realizada por meio do 
portal Sentinel Vision e da plataforma Marine Pollution Surveillance Report, mantida pelo OSPO (Office 
of Satellite and Product Operations).

Embora a base de dados esteja em constante expansão, os resultados apresentados neste trabalho 
utilizaram um total de 82 produtos Sentinel-1 A e B. Esses produtos foram rotulados e, posteriormente, 
recortados em pequenas imagens quadradas. Para este estudo, foi utilizado exclusivamente um conjunto 
com imagens de 512 × 512 pixels, totalizando 8.072 amostras, das quais metade apresenta óleo e a outra 
metade não. A estratégia de avaliação adotada foi o holdout, com uma divisão de 80% para treinamento e 
20% para validação.

Para evitar o sobreajuste (overfitting), foram aplicadas algumas técnicas de regularização, incluin-
do a penalidade L2 (weight decay) com valor de 10^{-2}, e um Dropout de 10%, inserido em camadas 
específicas da rede.

Adicionalmente, foi utilizada a técnica de Early Stopping, que interrompe o treinamento automa-
ticamente caso a perda de validação deixe de melhorar por um determinado número de épocas — neste 
caso, uma paciência de 14 épocas. Essa técnica impacta diretamente a curva de perda, pois pode encerrar o 
treinamento antes que o modelo entre em overfitting, impedindo que a perda de validação forme a curva 
típica em U. Assim, o treinamento é finalizado no ponto de melhor desempenho em validação, sem per-
mitir que a perda volte a subir.

Não somente isso, mas no treinamento também foi utilizada a função de perda FocalLoss, apro-
priada para lidar com desbalanceamentos entre classes. O otimizador escolhido foi o Adam, com uma taxa 
de aprendizado inicial de 10^ {-5}. Também foi utilizado um scheduler do tipo ReduceLROnPlateau, que 
monitora a perda de validação e reduz automaticamente a taxa de aprendizado quando a métrica apresenta 
estagnação ou piora. O fator de paciência para o scheduler foi definido como quatro épocas. Essa estratégia 
impacta a curva de perda ao suavizar a descida e contribuir para uma melhor convergência, mesmo em 
regiões de pouca variação.

No que diz respeito a linguagem de programação, utilizou-se Python, com a biblioteca PyTorch 
como principal framework. O PyTorch oferece integração nativa com a tecnologia CUDA, permitindo 
o uso de GPUs NVIDIA para aceleração das operações. Neste caso, foram utilizadas duas placas NVIDIA 
GeForce RTX 3060, cada uma com 12 GB de memória VRAM. O tamanho do lote (batch size) foi ajus-
tado com base na limitação de memória disponível, resultando em um valor aproximado de 18 amostras 
por lote. Esse número pode variar de acordo com o tamanho das imagens, o uso de memória por outros 
processos e outros fatores do ambiente de execução.

A fim de avaliar o desempenho do modelo de detecção, foram utilizadas métricas comuns na área 
de aprendizado de máquina, as quais contemplam acurácia, precisão, recall, F1-score e o índice de Jaccard. 
A Tabela 1 apresenta as métricas do modelo U-Net, com backbone ResNet- 50, utilizado para criar os 
polígonos deste estudo de caso.
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Tabela 1 - Métricas de desempenho do modelo de detecção U-Net com ResNet - 50 como ba-
ckbone

	

Fonte: Elaborada pelos autores, 2025.

	A saída do classificador é uma máscara de probabilidade georreferenciada, que, ao ultrapassar 
limiares definidos, aciona alertas por e-mail e FTP, acompanhados de dados ambientais auxiliares (e.g., 
correntes, ventos e concentração de clorofila). Operacionalmente, o tempo completo de processamento, 
desde a aquisição da imagem até a emissão do alerta, é de aproximadamente 25 minutos.

3.3 MODELAGEM NUMÉRICA COM MEDSLIK-II

Após a detecção das manchas em SAR, a trajetória e a transformação do óleo foram simuladas 
com o MEDSLIK-II, um modelo Lagrangeano amplamente utilizado para previsão de curto prazo em 
derramamentos na superfície do mar por sua robustez, capacidade de representar diferentes tipos de óleo 
e facilidade de acoplamento a modelos de circulação oceânica (De Dominicis et al., 2013a; 2013b). No 
MEDSLIK-II, a representação do derrame combina processos determinísticos (advecção/difusão forçadas 
por correntes e vento) e estocásticos (passeio aleatório associado à difusividade turbulenta), além da deriva 
pelo vento e, quando configurado, da deriva de Stokes associada ao campo de ondas (De Dominicis et al., 
2013a).

A estrutura interna do modelo organiza as variáveis de estado em três grupos interligados: (i) 
variáveis do tipo “derrame”, que controlam o balanço de volumes nas camadas espessa e fina na superfície 
e no sub-superfície, sobre as quais atuam os processos de intemperismo; (ii) variáveis do tipo “partícula”, 
que carregam posição, volume (com partes evaporativa e não evaporativa) e status (superfície, dispersa, 
sedimentada ou em costa), responsáveis por transportar o óleo no campo de correntes; e (iii) variáveis 
“estruturais”, que expressam as concentrações na superfície, na coluna e na costa, usadas na geração de pro-
dutos espaciais (De Dominicis et al., 2013a). Os processos de intemperismo (evaporação, emulsificação, 
dispersão/ressurgência e espalhamento) seguem a família de algoritmos clássicos de destino do óleo, com 
parâmetros dependentes de vento a 10 m e TSM, e beaching com tempos de residência ajustados ao tipo 
de costa (Mackay et al., 1980; De Dominicis et al., 2013a).

Na versão operacional do SipamMar, as entradas ambientais são obtidas de fontes operacionais 
consolidadas como o Copernicus Marine Service (campos de correntes e TSM), ERA5 e GFS/NOAA 
(vento), e integradas por rotinas Python de download automatizado (motuclient, cdsapi e requests), pré-
-processamento (padronização/grade, formatação compatível com o MEDSLIK-II em NetCDF) e valida-
ção visual das forçantes. Essa automação também conduz a etapa de pós-processamento, padronizando a 
geração de mapas e animações e reduzindo a intervenção manual durante a operação, como descrito em 
seu pipeline (De Dominicis et al., 2013b).

No nosso arranjo operacional, cada simulação é inicializada com 100,000 partículas Lagrangeanas 
distribuídas sobre os polígonos de detecção, solução que oferece boa resolução espacial das concentrações 
simuladas e está dentro da faixa recomendada/validada na literatura do próprio MEDSLIK-II (De Domini-
cis et al., 2013a; 2013b). A cinemática é integrada com passo de tempo fixo para o transporte, enquanto os 
processos de intemperismo usam sub-passo interno mais curto, conforme a formulação do modelo; desse 
modo, o controle de estabilidade e precisão é feito pela escolha dos passos e dos coeficientes de difusão 
(De Dominicis et al., 2013a).

A tolerância numérica do solver do MEDSLIK-II abrange a resolução espacial da grade do tracer 
de óleo, os passos de tempo e os coeficientes de difusão utilizados. Para uma reconstrução realista da 
concentração, a resolução da grade do tracer de óleo é de aproximadamente 100 metros. Esta resolução 
é calibrada para estar entre a escala de difusão (aproximadamente 60 metros) e a escala advectiva (aproxi-
madamente 180 metros), considerando um passo de tempo Lagrangiano de 1800 segundos (30min) e um 
coeficiente de difusividade horizontal de 2 m²/s, coerente com modelos Eulerianos de alta resolução (De 
Dominicis et al., 2013a). Os coeficientes de difusividade vertical (Kv) são de 0,01 m²/s dentro da camada 
de mistura e 1x10⁻⁴ m²/s abaixo dela, respectivamente (De Dominicis et al., 2013b).

 As saídas diagnósticas do nosso sistema são armazenadas em NetCDF a cada 1 hora, garantindo 
compatibilidade com as forçantes e com a rotina de disseminação dos resultados; quando necessário para 
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comunicação, os produtos cartográficos são agregados em janelas mais amplas sem alterar a resolução 
temporal interna do cálculo (De Dominicis et al., 2013b). Os termos determinísticos do deslocamento 
superficial incluem a contribuição das correntes do modelo oceânico, uma correção de vento (aplicável 
como termo de incerteza quando a circulação superficial não está plenamente resolvida) e, quando habili-
tado, a deriva de Stokes parametrizada a partir do espectro de ondas JONSWAP (Hasselmann et al., 1973; 
De Dominicis et al., 2013a). Para latitudes maiores do que 10°S, um fator de deriva do vento de 6% e um 
ângulo de 45° são utilizados, uma vez que foram considerados os mais eficazes para reproduzir a trajetória 
observada em águas brasileiras, diferindo dos valores típicos (1-6% para o fator e 0-25° para o ângulo) 
encontrados em outras regiões como o vento Mediterrâneo (Correia Lima et al., 2025). 

Em conjunto, essa configuração fecha a cadeia operacional: ingestão dos dados SAR e detecção au-
tomática; preparação das forçantes; simulação Lagrangeana com intemperismo e interação com a costa; e 
exportação SIG-ready (NetCDF e camadas vetoriais), o que sustenta a análise rápida e a reprodutibilidade 
do fluxo do sistema, fundamento central dos casos de uso apresentados. Isso torna-as ferramentas cruciais 
para o suporte à tomada de decisão em resposta ambiental e no planejamento de ações de mitigação e pre-
venção de derramamento de óleo no mar.

A automação completa do processo – da configuração à geração de figuras – foi consolidada por 
scripts, reduzindo significativamente a intervenção humana e o tempo de execução, além de minimizar 
erros de configuração. O tempo de execução foi de aproximadamente 20 minutos.

4 DESENVOLVIMENTO
4.1 INTEGRAÇÃO OPERACIONAL

O sistema já opera com capacidade de ingestão automática de imagens Sentinel-1, análise via redes 
neurais, envio de alertas e ativação do módulo de modelagem oceânica. Os dados meteorológicos e ocea-
nográficos são adquiridos de forma programática e as simulações são executadas considerando múltiplos 
tipos de óleo (leve, médio e pesado), com saídas gráficas diárias e animações horárias para cada tipo. 

A escolha de rodar o modelo para três tipos de óleos diferentes foi considerada presumindo a falta 
de informação do API do óleo derramado, o que é bem comum no caso das bacias brasileiras. Esse tipo de 
informação não é compartilhado abertamente devido a questões “sensíveis” alegadas pelas operadoras em 
águas brasileiras. Entretanto, de posse do API específico, apenas uma simulação é realizada. A interopera-
bilidade das saídas do sistema com ambientes SIG permite a geração de produtos analíticos com suporte 
espacial explícito, fundamentais para a resposta ambiental e o planejamento de ações de mitigação e pre-
venção.

 4.2 ESTUDO DE CASO 1: PORÇÃO SUDOESTE DO GOLFO DO MÉXICO

Para demonstrar a aplicabilidade do sistema desenvolvido, foi selecionado um episódio de detec-
ção de possível mancha de óleo identificado por imagem SAR Sentinel-1. Essas coordenadas correspon-
dem à porção sudoeste do Golfo do México, próxima à costa do estado de Veracruz (México), e da região 
marítima entre a Baía de Campeche e o litoral sul do estado de Tamaulipas. Este estudo de caso ilustra o 
funcionamento completo da cadeia operacional – desde a ingestão da imagem, passando pela detecção 
automática, até a simulação de dispersão e visualização dos impactos potenciais. 

Figura 1 - Metadados da imagem SAR Sentinel-1 (órbita CC57) utilizada na detecção automática 
no Golfo do México.

Fonte: SipamMar.
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4.2.1Detecção automatizada

A imagem SAR analisada foi processada pelo sistema SipamMar, treinado com redes neurais con-
volucionais do tipo U-Net. A Figura 2 apresenta, no painel (a), a imagem SAR Sentinel-1 georreferenciada 
(σ₀ em dB)  da região sudoeste do Golfo do México, sem indicações de detecção, enquanto o painel (b) 
mostra os resultados da segmentação automática realizada pelo sistema SipamMar.

As manchas identificadas como prováveis feições oleosas estão destacadas com contornos verme-
lhos e numeradas de acordo com suas respectivas probabilidades de detecção. As detecções ocorrem em 
áreas com baixo retroespalhamento (σ₀ < -25 dB), coerente com a supressão da rugosidade superficial 
provocada por filmes de óleo. A comparação entre os dois painéis evidencia a capacidade do sistema de 
identificar automaticamente regiões suspeitas em imagens SAR complexas, mesmo em ampla extensão 
espacial e sob variação gradual da rugosidade do mar.

Figura 2 - Imagens SAR CC57 pós-processadas e georreferenciadas em σ_0  (Sigma_zero, em dB). (a) 
Imagem SAR sem detecções; (b) Imagem SAR com as detecções do sistema, marcadas em vermelho

Fonte: SipamMar

A Figura 3 apresenta a tabela de saídas do modelo de detecção automática do sistema SipamMar, 
contendo os metadados de sete polígonos segmentados como possíveis manchas de óleo no oceano. Para 
cada detecção, são fornecidas as coordenadas geográficas (latitude e longitude do centroide), a área esti-
mada (em km²), a probabilidade média de detecção e a maior probabilidade localizada dentro da mancha. 
Os valores de probabilidade média variam entre 44% e 60%, com máximos locais chegando a 84%, o 
que indica diferentes níveis de confiança nas detecções, sendo o polígono 1 o mais relevante do ponto de 
vista operacional. A presença de links para visualização rápida (“quicklook”) permite a validação visual das 
feições identificadas, reforçando a integração entre os processos automáticos e a análise por especialistas. 
Esses dados são cruciais para priorizar inspeções e acionar a modelagem numérica de dispersão.

Figura 3 - Metadados das detecções automáticas realizadas pelo sistema SipamMar, indicando 
localização, área, probabilidade média e máxima de presença de óleo para sete polígonos identificados em 
imagem SAR Sentinel-1

Fonte: SipamMar

A rede fornece duas métricas de confiança: a probabilidade média de detecção em toda a man-
cha e a maior probabilidade localizada em algum ponto dela. As probabilidades médias variam de 44% a 
60%, enquanto os valores máximos chegam a até 84%, sugerindo forte indicação da presença de óleo em 
determinadas regiões. Importante ressaltar que o sistema apenas emite alertas quando a probabilidade mé-
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dia de detecção supera um limiar previamente definido 
pelo operador, garantindo maior robustez e reduzindo a 
emissão de falsos positivos.

Esses dados são fundamentais para priorização 
de ações de verificação em campo e para alimentar sis-
temas de modelagem da trajetória potencial da conta-
minação. A Figura 4 mostra os recortes ampliados das 
manchas identificadas, evidenciando contornos bem de-
finidos e distintas assinaturas que corroboram a hipótese 
de contaminação oleosa. A classificação foi baseada em 
probabilidade superior a 0,6, limiar calibrado com base 
em métricas de desempenho dos modelos em campa-
nhas anteriores.

A figura 5 representa variáveis ambientais au-
xiliares que compõem o conjunto de dados de apoio à 
validação de detecções automáticas de manchas de óleo 
realizadas pelo sistema SipamMar. A primeira imagem 
mostra a concentração de clorofila-a (mg/m³), revelan-
do baixos níveis na área das detecções (valores < 1 mg/
m³), o que reduz a probabilidade de que os padrões es-
curos na imagem SAR sejam causados por filmes biogê-
nicos associados a blooms algais. A segunda figura exibe a 
velocidade do vento em superfície, com predominância 
de valores entre 5 e 7 m/s, o que caracteriza condições 
favoráveis à formação de padrões de rugosidade e à dis-
persão passiva de óleo na interface ar-mar. 

Figura 4 - Recortes das manchas de óleo, da 
imagem CC57, detectadas pelo sistema

             
            

           
 

Fonte: SipamMar
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Na terceira figura, a velocidade das correntes superficiais mostra regiões com intensa atividade di-
nâmica (valores superiores a 0.3 m/s), influenciando diretamente a trajetória e a fragmentação da mancha. 
Por fim, a quarta imagem apresenta a temperatura da superfície do mar (TSM), com valores homogêneos 
entre 27 °C e 29 °C, indicando estabilidade térmica regional. Esses dados complementares são essenciais 
para a avaliação crítica do operador, permitindo descartar falsas detecções causadas por artefatos naturais, 
confirmar a coerência física das anomalias detectadas e alimentar, de forma realista, os modelos de previsão 
de dispersão de óleo.

Figura 5 – Dados ambientais auxiliares à validação das detecções de óleo realizadas pelo sistema Si-
pamMar: (a) concentração de clorofila-a (mg/m³), (b) velocidade do vento em superfície (m/s), (c) ve-

locidade das correntes oceânicas superficiais (m/s) e (d) temperatura da superfície do mar (°C). Essas va-
riáveis fornecem suporte à análise do operador, ajudando a distinguir manchas reais de artefatos naturais

Fonte: SipamMar

   
     Fonte: SipamMar

A clorofila, por exemplo, pode indicar a presença de blooms biológicos que alteram as caracterís-
ticas da superfície marítima. Já a ausência de vento ou a presença de gradientes térmicos acentuados pode 
resultar em padrões semelhantes ao espalhamento de óleo. Assim, a integração dessas informações no pro-
cesso de triagem permite reduzir significativamente a incidência de falsos positivos, fornecendo subsídios 
mais confiáveis ao tomador de decisão e otimizando o direcionamento das ações de resposta.

4.2.2 Modelagem da dispersão 

Após a confirmação da detecção, o módulo de modelagem numérica foi ativado. Utilizando o 
modelo MEDSLIK-II modificado, foram simuladas 72 horas de dispersão, considerando óleo tipo médio, 
sob condições oceanográficas e meteorológicas extraídas do Copernicus Marine Environment Monitoring 
Service (CMEMS) e ERA5. A Figura 3 mostra a evolução temporal da pluma de óleo, destacando interva-
los de 9 a 50 horas após a detecção inicial. 
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A trajetória simulada (Figura 6) apresentou deriva consistente com os padrões regionais de cor-
rente e vento, com deslocamento majoritariamente para oeste, acompanhando a direção do transporte su-
perficial na área. A pluma se manteve coesa até cerca de 30 horas, momento em que começou a se alongar 
e fragmentar, indicando intensificação dos processos de difusão e dispersão.

Figura 6 - Simulação da dispersão das manchas identificadas pelo sistema. Intervalo de tempo 
de entre 9 horas e 50 horas após a identificação.

                    Fonte: MEDSLIK-II

4.2.3 Análise operacional

Este experimento serve de base para o teste da capacidade do sistema em fornecer, de forma in-
tegrada e autônoma, alertas de detecção e projeções realistas da evolução espacial de manchas de óleo. Os 
dados simulados foram exportados em formatos interoperáveis com sistemas GIS (NetCDF, GeoTIFF e 
shapefiles), permitindo sobreposição com camadas socioambientais e suporte direto à tomada de decisão. 
Além disso, a performance do modelo de detecção e a coerência da simulação com os padrões esperados 
demonstram que o sistema é aplicável não apenas para eventos históricos, mas também como ferramenta 
preditiva em operações de vigilância e resposta rápida.
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4.3 ESTUDO DE CASO 2: PORÇÃO NORTE-CENTRAL DO GOLFO DO MÉXICO

A fim de demonstrar a aplicabilidade do sistema desenvolvido em detectar alvos de óleo na su-
perfície do oceano, com a presença de falsos positivos, foi selecionado um episódio de detecção situado na 
porção norte-central do Golfo do México, ao sul da costa da Louisiana (EUA). Esta é uma área bastante 
próxima a campos petrolíferos offshore como o Mississippi Canyon e o Green Canyon, regiões historica-
mente associadas à exploração de petróleo, inclusive próximas ao local do desastre da Deepwater Horizon 
(2010), identificado por imagem SAR Sentinel-1. 

Aqui encontramos um exemplo de um derramamento circundado de diversos casos de falsos 
positivos como baixa de vento, próximos a mancha de óleo, e células de chuva no canto direito superior 
da imagem. Este estudo ilustra o funcionamento completo da cadeia operacional SipamMAR, desde a 
ingestão da imagem, passando pela detecção automática, até a simulação de dispersão e visualização dos 
impactos potenciais. A figura 7 representa os metadados da imagem analisada, com as bordas limítrofes da 
imagem de satélite original.

Figura 7 – Metadados da imagem SAR Sentinel-1 associados a mancha de óleo detectada no      
estudo de caso.

Fonte: SipamMar.

4.3.1 Detecção automatizada

A imagem SAR analisada foi processada pelo sistema SipamMAR e o alerta sinalizado foi baseado 
na rede neural do tipo RESNET-50, com índices de probabilidade de pixel superiores aos pré-estabelecidos 
pelo sistema de aviso. A Figura 8 apresenta, à esquerda, a imagem SAR original e, à direita, o resultado da 
segmentação semântica realizada pelo modelo, com as regiões identificadas como óleo destacadas em ver-
melho. A análise foi conduzida sem intervenção humana, reforçando a autonomia do sistema em condições 
reais de operação.

Figura 8 - Imagens SAR D205. (a) Imagem SAR sem detecções; (b) Imagem SAR com as detec-
ções do sistema, marcadas em vermelho. 

                      Fonte: SipamMar

	A figura 9 sumariza os resultados da segmentação de manchas de óleo no oceano realizada pela 
rede neural convolucional do tipo ResNet-50. Observam-se três polígonos identificados com diferentes 
áreas, localizações geográficas e probabilidades de detecção. O primeiro polígono, situado em aproximada-
mente 28.3185° de longitude e -90.0854° de latitude, possui área de 14,18 km², com uma probabilidade 
de detecção de 58% e uma probabilidade máxima de 85%. O segundo polígono é o maior, com 90,69 km², 
mas apresenta uma probabilidade inferior (49%), ainda que sua máxima estimada seja de 86%. Já o tercei-
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ro polígono, com apenas 9,56 km², possui as menores probabilidades geral (41%) e máxima (80%). Esses 
resultados sugerem que, apesar da consistência na identificação das regiões potencialmente contaminadas, 
há variabilidade tanto na extensão espacial quanto na confiança atribuída pelo modelo a cada detecção. 

A diferença entre a probabilidade média e a máxima também pode indicar heterogeneidade es-
pacial interna nos polígonos segmentados. Esse padrão é compatível com a natureza difusa das manchas 
de óleo observadas por sensores de sensoriamento remoto, bem como com os limites do classificador em 
lidar com áreas de transição e contraste espectral reduzido. A presença dos links de “quicklook” facilita a 
verificação visual e validação qualitativa dessas detecções, reforçando a integração entre métodos automá-
ticos e inspeção humana no processo de monitoramento ambiental.

Figura 9 – Metadados de representação de saída do modelo de detecção com índices de probabi-
lidade, área estima e posicionamento geográfico.

      Fonte: SipamMar

As figuras 10 apresenta três polígonos de detecção automática de manchas de óleo processados 
neste estudo de caso pelo sistema SipamMar. Cada imagem mostra a assinatura de retroespalhamento em 
decibéis (σ₀), com os contornos das áreas segmentadas demarcados em vermelho. O Polígono 1 (Figura 1) 
exibe uma mancha bem definida com estrutura alongada, centrada entre 28.26°N e 28.38°N e com um 
contraste acentuado na assinatura de σ₀, atingindo valores inferiores a -30 dB, consistentes com a supressão 
do espalhamento causada por filmes oleosos. 

O Polígono 2 (Figura 2), o maior em área (90.689 km²), apresenta uma feição curva e extensa, 
com um padrão de distribuição espacial mais heterogêneo e inserido em um campo de fundo nebuloso, o 
que pode indicar presença de interferência atmosférica ou variações da rugosidade superficial. O Polígono 
3 (Figura 3) é o menor entre os três, mas revela uma feição mais fragmentada e difusa, sugerindo dispersão 
do óleo ou presença de múltiplas fontes pontuais. 

A coerência entre os contornos da rede neural (ResNet-50) e as áreas de baixo σ₀ reforça a eficácia 
do algoritmo para a detecção automática de anomalias compatíveis com manchas de óleo no mar, mesmo 
em diferentes contextos morfológicos e espectrais. A interpretação visual, facilitada pela escala de refleti-
vidade e barras de distância, corrobora a robustez do modelo na identificação de eventos potencialmente 
poluentes em ambientes oceânicos.

Figura 10 - Recortes das manchas de óleo, da imagem D205, detectadas pelo sistema SIPAMMAR

 Fonte: SipamMar

A Figura 11 apresenta um conjunto de dados auxiliares utilizados para apoiar a análise qualitativa 
do operador na validação de uma detecção automática de mancha de óleo realizada pelo sistema SipamMar. 
A primeira subfigura mostra a concentração de clorofila-a (mg/m³), onde se observa que a região da man-
cha detectada apresenta baixos teores de biomassa fitoplanctônica, o que reduz a possibilidade de frentes 
biológicas ou manchas de origem natural associados a atividade biológica intensa. A segunda subfigura 
exibe o campo de vento superficial, evidenciando velocidades moderadas (entre 5 e 8 m/s) com direção 
predominante de norte a sul, coerente com o alinhamento e a dispersão observada da feição suspeita, re-
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forçando a hipótese de transporte passivo de uma película oleosa.

Por fim, a terceira subfigura mostra o mapa de probabilidade de presença de óleo gerado por um 
classificador baseado na arquitetura U-Net combinada com ResNet - 50, com valores superiores a 0.8 na 
região da mancha, o que indica alta confiança do modelo na detecção. A combinação dessas três camadas in-
formativas — baixa clorofila, coerência vetorial do vento e alta probabilidade — fornece uma base robusta 
para a confirmação da anomalia como um potencial derrame de petróleo e atualizações metodológicas 
recentes aplicadas à inteligência artificial no sensoriamento remoto ambiental.

Figura 11 – Dados auxiliares de previsão da detecção de óleo, com mapas de concentração su-
perficial de clorofila, velocidade do vento e o mapa de probabilidade de óleo associado aos modelos de 

previsão.
       

       

                        

 

Fonte: SipamMar

4.3.2 Modelagem da dispersão

Após a confirmação da detecção, o módulo de modelagem numérica foi ativado. Utilizando o 
modelo MEDSLIK-II modificado, foram simuladas 72 horas de dispersão, considerando óleo tipo médio, 
sob condições oceanográficas e meteorológicas extraídas do Copernicus Marine Environment Monitoring 
Service (CMEMS) e ERA5. A Figura 9 mostra a evolução temporal da pluma de óleo, destacando interva-
los de 9 a 50 horas após a detecção inicial. 

A Figura 12 mostra simula a trajetória e a evolução da concentração de óleo na superfície do mar 
a partir de um evento de derramamento ocorrido em 05 de agosto de 2021. Cada painel representa um 
instante de tempo, em incrementos de seis horas até 72 horas após o evento inicial, revelando o compor-
tamento dinâmico da mancha sob a ação combinada das correntes oceânicas (vetores em azul) e dos ventos 
de superfície (vetores em vermelho). A mancha é representada em tons de roxo a amarelo, corresponden-
tes à concentração de óleo em toneladas por quilômetro quadrado, com os valores mais altos (acima de 
5.66 t.km⁻²) indicados pelas tonalidades mais claras.

Ao longo da simulação, observa-se um deslocamento gradual da mancha de oeste para leste-nor-
deste, consistente com a circulação oceânica local e o campo de vento sobreposto. Esse padrão evidencia a 
influência da rotação da corrente ciclônica na região e a ação do vento como força motriz secundária, con-
tribuindo para o transporte e a deformação da mancha. A previsão numérica mostra que, em cerca de três 
dias, a mancha percorre uma distância significativa, modificando sua forma e distribuição de concentração, 
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o que é crucial para avaliar os impactos ambientais e a priorização de resposta em áreas costeiras sensíveis 
ou de atividade econômica.

Modelos como o MEDSLIK-II são ferramentas fundamentais no contexto de resposta a emergên-
cias ambientais envolvendo derramamentos de óleo. Ao integrar dados de detecção remota com previsão 
ambiental (vento e corrente), esses modelos permitem estimar a trajetória provável da mancha em tempo 
quase real, fornecendo subsídios técnicos para decisões operacionais, como a mobilização de embarcações 
de contenção, o direcionamento de boias de absorção ou a emissão de alertas para comunidades costeiras. 
A simulação automática a partir de pontos centrais detectados pelo sistema SipamMar representa um avan-
ço na automação do monitoramento e resposta, alinhando inteligência artificial à modelagem preditiva em 
uma abordagem integrada e eficiente para gestão de desastres ambientais.

Figura 12 – Simulação da dispersão de óleo realizada com o modelo MEDSLIK-II para o evento 
detectado em 05 de agosto de 2021 às 00:02 GMT (caso D250). Os painéis mostram a evolução da con-
centração superficial de óleo (tons·km⁻²) ao longo de 72 horas, em intervalos regulares de 6 horas.

 

Fonte: MEDSLIK-II

5 CONCLUSÃO
O desenvolvimento e implementação do sistema SipamMAR representam um avanço significa-

tivo na capacidade nacional de monitoramento ambiental e resposta a derramamentos de óleo em águas 
jurisdicionais brasileiras. Ao integrar tecnologias de sensoriamento remoto por radar de abertura sintética 
(SAR), algoritmos de aprendizado profundo com redes neurais convolucionais e modelagem numérica 
de dispersão de contaminantes, o sistema automatiza a cadeia de detecção, alerta e previsão, reduzindo a 
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dependência de ações humanas e otimizando a eficiência operacional. 
A performance de uma rede neural convolucional na detecção de manchas de óleo em imagens 

SAR está intrinsecamente ligada às condições ambientais que influenciam o retroespalhamento das ondas 
de radar na superfície do oceano. Fatores como a velocidade e direção do vento, por exemplo, são funda-
mentais. Ventos fortes aumentam a rugosidade da superfície, elevando o retroespalhamento geral e poten-
cialmente mascando a mancha, enquanto ventos fracos podem criar manchas escurar naturais que podem 
ser confundidas com óleo, levando a falsos positivos. Além disso, concentração de filmes biogênicos, como 
a clorofila, também possuem o potencial de criar manchas escuras naturais para sensores SAR e, portanto, 
com potencial para gerar falsos positivos.

Observou-se que em situações de vento fraco, a rede convolucional manteve alta taxa de detecção, 
com níveis de confiança médios superiores à média observada, refletindo a boa separabilidade espectral dos 
padrões de óleo em contraste com o mar calmo. Por outro lado, em condições com presença de lookalikes 
(ex.: manchas de algas, frentes térmicas e zonas de cisalhamento), a taxa de falsos positivos aumentou em 
aproximadamente 12–15%, reduzindo o nível médio de confiança para valores superiores aos esperados 
por diferente referencias que citamos no trabalho. Essa variação indica que a rede é mais sensível a feições 
superficiais complexas do que às condições meteorológicas isoladas.

Destacamos ainda que a coerência com dados auxiliares (vento e correntes superficiais) contribuiu 
para reduzir a incerteza: quando associados a situações oceanográficas consistentes com derrames de óleo 
(ex.: advecção alinhada ao vento predominante), a probabilidade de detecção correta foi maior. Essa aná-
lise sugere que futuras versões do sistema poderão ser aprimoradas pela integração explícita de variáveis 
ambientais como entradas adicionais ao modelo, aumentando a robustez frente a lookalikes e condições 
adversas.

Os estudos de caso demonstram a robustez dos classificadores U-Net e ResNet-50 na segmentação 
de manchas de óleo em imagens SAR, com desempenho consistente mesmo em ambientes complexos e 
sujeitos a interferências, como regiões com presença de lookalikes ou condições meteorológicas adversas. 
A integração de dados auxiliares, como campos de vento, concentração de clorofila e probabilidades de de-
tecção, mostrou-se essencial para a redução de falsos positivos e para a validação das anomalias detectadas. 

Essa abordagem multivariada fortalece a tomada de decisão e contribui para uma resposta mais 
rápida e informada. Por sua vez, a modelagem preditiva com o MEDSLIK-II, alimentada automaticamente 
por dados observacionais e previsionais de alta resolução, permite simular cenários realistas de transporte 
e transformação do óleo, proporcionando subsídios técnicos fundamentais para a atuação de órgãos am-
bientais, autoridades marítimas e operadoras portuárias.

Apesar dos avanços alcançados, é importante reconhecer algumas limitações do presente estudo. 
Ressaltamos que não foi conduzida uma validação estatística sistemática das detecções automáticas, baseada 
em eventos-teste in situ. Acreditamos que isto restringe a quantificação do desempenho dos classificadores 
em cenários reais variados. Visando contornar este problema, dispomos de um grupo de operadores treina-
dos para verificar cada sinal de alerta do sistema. Outro aspecto importante a considerar é a predominância 
do uso de dados simulados ou de estudos de caso específicos, ainda carecendo de uma aplicação operacional 
ampla e contínua em tempo real. Isto permitirá ao SipamMar aferir a robustez do sistema frente a diferen-
tes tipos de óleo e biomas marinhos.

Como perspectivas futuras, destacam-se a expansão da base de treinamento com dados oriundos 
de múltiplos sensores, a integração de rotinas de validação estatística comparando as detecções automáticas 
com observações de campo, e o teste da plataforma em diferentes ambientes costeiros e oceânicos. Ade-
mais, a incorporação do SipamMar em protocolos governamentais de resposta emergencial poderá poten-
cializar seu impacto prático, ampliando o suporte às ações de monitoramento e mitigação de derrames de 
óleo em águas jurisdicionais brasileiras.

Diante dos desafios impostos pela extensão da Amazônia Azul e pela crescente pressão antrópica 
sobre os ecossistemas marinhos, o SipamMAR oferece uma alternativa tecnológica autônoma, escalável 
e de alto valor estratégico. Ao consolidar a aplicação de inteligência artificial e modelagem ambiental no 
contexto da vigilância oceânica, o sistema se configura como uma ferramenta de Estado para a proteção 
dos recursos marinhos, reforçando a soberania nacional, a segurança ambiental e a capacidade de resposta 
frente a desastres ecológicos de grandes proporções.

O sistema representa um avanço relevante na capacidade brasileira de resposta a incidentes am-
bientais no mar, especialmente ao integrar diferentes fontes de dados, automação de processos e visualiza-
ção espacial para suporte à tomada de decisão. Espera-se que, com a continuidade do desenvolvimento e 
a incorporação de novas funcionalidades, como índices de impacto ambiental e interface web integrada, o 
sistema possa ser consolidado como uma solução estratégica para a proteção da Amazônia Azul e das zonas 
costeiras do país.
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